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Abstract 
Characterizing the mechanisms influencing the distribution of genetic variation in aquatic species can be difficult due to the dynamic nature of 
hydrological landscapes. In North America’s Central Highlands, a complex history of glacial dynamics, long-term isolation, and secondary contact 
have shaped genetic variation in aquatic species. Although the effects of glacial history have been demonstrated in many taxa, responses are 
often lineage- or species-specific and driven by organismal ecology. In this study, we reconstruct the evolutionary history of a freshwater mussel 
species complex using a suite of mitochondrial and nuclear loci to resolve taxonomic and demographic uncertainties. Our findings do not sup-
port Pleurobema rubrum as a valid species, which is proposed for listing as threatened under the U.S. Endangered Species Act. We synonymize 
P. rubrum under Pleurobema sintoxia—a common and widespread species found throughout the Mississippi River Basin. Further investigation 
of patterns of genetic variation in P. sintoxia identified a complex demographic history, including ancestral vicariance and secondary contact, 
within the Eastern Highlands. We hypothesize these patterns were shaped by ancestral vicariance driven by the formation of Lake Green and 
subsequent secondary contact after the last glacial maximum. Our inference aligns with demographic histories observed in other aquatic taxa 
in the region and mirrors patterns of genetic variation of a freshwater fish species (Erimystax dissimilis) confirmed to serve as a parasitic larval 
host for P. sintoxia. Our findings directly link species ecology to observed patterns of genetic variation and may have significant implications for 
future conservation and recovery actions of freshwater mussels.
Key words: biogeography, Central Highlands, endangered species, glacial dynamics, Pleurobema, Unionidae

Introduction
Understanding contemporary and historical mechanisms 
influencing the spatial distributions of species is a central 

goal of biogeography (Avise 2000). The increasing avail-
ability of DNA sequencing technology has led to modern 
studies routinely using genetic data to explore mechanisms 
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that have influenced species’ demographic histories. In nat-
ural populations, genetic divergence is often correlated with 
geographic distance, conforming to the isolation-by-distance 
(IBD) model (Wright 1943). However, populations can deviate 
from the IBD model based on several processes, including vi-
cariance, secondary contact, or infrequent, and unexpected 
long-distance dispersal (Slatkin 1985). This, along with con-
temporary dispersal opportunities being highly restricted by 
human-mediated degradation of suitable habitat patches and 
restriction of gene flow (e.g. dams), can produce complex 
demographic histories that deviate from the IBD model. This 
is certainly the case in freshwater habitats, which are among 
the most imperiled ecosystems globally (Strayer and Dudgeon 
2010) with an often hydrologically complex evolution due to 
successive cycles of climatic changes during the Pliocene and 
Pleistocene when the repeated connection and isolation of 
waterbodies occurred during glaciation and sea level changes 
(Galloway 2008; Galloway et al. 2011).

The inland waters of North America have been sculpted 
by a series of climatic and geological events. North American 
river drainages in the Eastern, Ouachita, and Ozark high-
land regions (together considered the Central Highlands) 
are considered hotspots of aquatic endemism and harbor the 
highest global diversity of freshwater gastropods, crayfishes, 
fishes, and mussels (Ortmann 1924, 1925; Starnes and Etnier 
1986; Etnier and Starnes 1993; Lydeard and Mayden 1995; 
Parmalee and Bogan 1998; Crandall and Buhay 2008). It 
is hypothesized that aquatic biodiversity in this region has 
been shaped by the repeated advancement and contraction 
of glaciers and ice sheets through the Miocene, Pliocene, and 
Pleistocene (e.g. Mayden 1988; Bernatchez and Wilson 1998; 
Berendzen et al. 2003, 2008; Ray et al. 2006). During the 
Pleistocene, the Central Highlands were divided into two ge-
ographically discontinuous upland areas by the deposition 
of glacial alluvium, till, and loess in the Mississippi River 
floodplain (Thornbury 1965; Mayden 1985): 1) the Eastern 
Highlands, situated east of the Mississippi River, and 2) the 
Interior Highlands, located west of the Mississippi River 
(Fig. 1). The Interior Highlands were subsequently split into 
the Ozark and Ouachita Highlands during the formation of 
Arkansas River floodplain (Robison 1986; Mayden 1988; 
Haag 2010). The successive cycles of climatic changes and 
dynamic nature of hydrological landscapes in these regions 
have created complex demographic histories of species and 
their populations that do not always exhibit genealogical 
concordance (Avise 2000). Historical geological events have 
influenced freshwater biodiversity through the fragmenta-
tion and genetic divergence of populations, and subsequent 
secondary contact of individuals from separate refugia (e.g. 
Berendzen et al. 2003; Simons 2004). Responses to glacial dy-
namics in North American aquatic taxa vary and are mostly 
lineage- or species-specific (Strange and Burr 1997; Kinziger 
et al. 2001; Near et al. 2001; Switzer and Wood 2002; Soltis 
et al. 2006; Elderkin et al. 2008; Inoue et al. 2014; Jones et al. 
2015b). Elucidating geographic patterns of genetic variation 
can therefore be complicated by the impacts of Pleistocene 
glaciations, especially for freshwater species with narrow 
ranges and dispersal capabilities that are not fully understood.

Focal system
Freshwater mussels (Bivalvia: Unionida) are a highly diverse 
group with approximately 1,000 species recognized globally 

and 388 endemic to North America (Graf and Cummings 
2021). Although taxonomically diverse, this group is also 
one of the most threatened in North America with over 65% 
of the species considered of conservation concern (Haag 
and Williams 2014). Imperilment stems from a combina-
tion of anthropogenic impacts, including habitat modifica-
tion and invasive species, and biological characteristics that 
make mussels sensitive to ecosystem state change (Williams 
et al. 1993; Haag 2012)—mussels are benthic, filter feeding 
ectotherms, and nearly all species rely on a parasitic larval 
stage that requires temporary attachment to freshwater 
fishes, often with a high degree of host specificity (Barnhart 
et al. 2008). The high level of imperilment has served as a 
catalyst for recent research to improve the understanding of 
the ecology and evolution of freshwater mussels (e.g. Smith 
et al. 2020; Hewitt et al. 2021; Lopes-Lima et al. 2021a; 
Neemuchwala et al. 2023).

Molecular data have revealed inaccuracies in morphology-
based taxonomy due to high levels of intraspecific varia-
bility and interspecific convergence in morphological traits 
(reviewed by Lopes-Lima et al. 2021b). Although recent re-
search incorporating molecular data has played a pivotal role 
in describing the diversity of the group, many species-level 
hypotheses primarily based on morphology remain untested. 
Species delineation in the tribe Pleurobemini, and specifi-
cally the genus Pleurobema, exemplify issues related to high 
levels of morphological variability and uncertain systematics. 
Species identification in this group is exceptionally chal-
lenging due to high levels of intraspecific variation and inter-
specific convergence of morphological traits (Ortmann 1920; 
Shea et al. 2011; Inoue et al. 2018; Olivera-Hyde et al. 2023). 
Recent molecular studies have been integral in resolving taxo-
nomic uncertainty of some Pleurobema species (Perkins et al. 
2017; Inoue et al. 2018; Morrison et al. 2021; Johnson et al. 
2023), but questions remain regarding the validity and distri-
bution of multiple species within the genus.

The Pyramid Pigtoe, Pleurobema rubrum (Rafinesque, 1820), 
and the Round Pigtoe, Pleurobema sintoxia (Rafinesque, 1820) 
were both described in the same publication with limited de-
tail regarding type localities. “Found in the Kentucky [River]” 
was included in the original description of P. rubrum and the 
type specimen mentioned by Vanatta (1915) was designated 
as the lectotype (ANSP 20237) by Johnson and Baker (1973); 
however, the origin of the lectotype is unknown. Similarly, the 
closest mention of a type locality in the original description 
of P. sintoxia is “found in the Ohio [River]” and Johnson and 
Baker (1973) designated the same specimen mentioned by 
Vanatta (1915) as the lectotype (ANSP 20208 from the Ohio 
River). Previous studies using mitochondrial sequence data 
and external shell morphology indicate the two species are 
potentially conspecifics without formal taxonomic revisions 
or recommendations (Campbell et al. 2005; Campbell and 
Lydeard 2012; Jones et al. 2015a; Inoue et al. 2018; Olivera-
Hyde et al. 2023). The scientific community at large still 
considers P. rubrum a valid taxon (Jones et al. 2005, 2021; 
Williams et al. 2008, 2017; Watters et al. 2009; Haag and 
Cicerello 2016) pending a comprehensive taxonomic assess-
ment that includes genetic sampling throughout the ranges of 
both nominal species. Pleurobema rubrum and P. sintoxia are 
thought to have been historically widespread in the Mississippi 
Basin from Wisconsin to Louisiana, including the Eastern 
and Interior highlands regions (Vidrine 1993; Parmalee and 
Bogan 1998; Williams et al. 2008; Watters et al. 2009). The 
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two species are considered sympatric across most of their re-
spective ranges (see Fig. 1), with the only exceptions being the 
eastern Great Lakes basin and upper Missouri River (only P. 
sintoxia) and the Yazoo River basin (only P. rubrum) (Williams 
et al. 2008; Watters et al. 2009; Jones et al. 2021). However, 
molecular and morphological similarities between the two spe-
cies have led researchers to question the distribution and va-
lidity of P. rubrum (Ortmann 1911; Parmalee and Bogan 1998; 
Inoue et al. 2018; Olivera-Hyde et al. 2023). Resolving this 
longstanding taxonomic uncertainty became urgent when P. 
rubrum was proposed to be listed as threatened under the U.S. 
Endangered Species Act (USFWS 2021).

In this study, we investigate the relationships within and 
among extant populations of P. rubrum and P. sintoxia to 
resolve taxonomic uncertainties, better understand his-
torical demographics, and help guide conservation action. 
Specifically, we analyzed DNA sequence data from two mito-
chondrial (mtDNA) genes, one nuclear DNA (nDNA) locus, 
and genome-wide single nucleotide polymorphisms (SNPs) 
generated using genotype-by-sequencing (GBS) to: 1) test the 
morphology-based taxonomic hypothesis that P. rubrum and 
P. sintoxia represent distinct species, 2) infer genetic struc-
ture across the ranges of both P. rubrum and P. sintoxia, 3) 
test demographic hypotheses of extant populations based 
on glacial dynamics, 4) synthesize possible drivers of the 
observed genetic variation, and 5) discuss the conservation 
implications of our findings. The results of our study have 
direct implications for conservation actions and provide an-
other empirical example of the effects of glacial dynamics on 
genetic variation in aquatic taxa.

Materials and methods
Sample collection, DNA extraction, and Sanger 
sequencing
Our goal was to include samples representing all extant 
populations of P. rubrum and P. sintoxia with a focus on 
capturing morphological variation and broad geographic 
coverage across the complex mosaic of allopatric and sym-
patric populations (Fig. 1). By coordinating sample pro-
curement with state agencies, regional experts, and museum 
curators, we were able to achieve broad geographic coverage 
of individuals representing the current concept of both species 
based on morphological identification and geographic distri-
bution. Existing samples in museum collections were screened 
before additional collections were made. All collections 
were made with proper permissions and specimens were ei-
ther non-lethally swabbed following Henley et al. (2006) or 
mantle clipped and released at site of capture, or vouchered 
in 95% non-denatured ethanol before being deposited in a 
public museum. Specifics on all collections are available from 
Johnson and Smith (2023).

DNA was extracted from DNA swabs or mantle tissue 
using the Qiagen PureGene extraction kit following manufac-
turer protocols (Qiagen; Hilden, Germany). High molecular 
weight DNA was ensured by visualizing isolations on a 1% 
agarose gel stained with Ethidium Bromide. We amplified and 
bidirectionally sequenced segments of two protein-coding 
mtDNA genes and one nDNA locus, which are commonly 
used in freshwater mussel species delineation studies (e.g. 
Campbell and Lydeard 2012; Johnson et al. 2018; Smith et al.  

Fig. 1. Map illustrating the ranges of P. rubrum and P. sintoxia with symbol colors to indicate drainage of capture and symbol shapes to reflect the 
genetic data collected to represent each population. The line demarcating the extent of ice sheets during the last glacial maximum follows Ehlers et al. 
(2011) and approximate area of the Eastern, Ouachita, and Ozark highland regions are encircled.
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2018, 2019, 2021a): the mtDNA protein-coding genes cy-
tochrome c oxidase subunit 1 (COX1) and NADH dehy-
drogenase subunit 1 (ND1), and the nDNA intron internal 
transcribed spacer 1 (ITS1). Freshwater mussels exhibit 
biparental inheritance of mitochondria (Breton et al. 2011) 
and primers targeted the female-transmitted copies of COX1 
and ND1. Primers and thermal cycling conditions used for 
PCR and sequencing follow Johnson et al. (2018). We used 
Geneious v 10.0.9 (Kearse et al. 2012) to edit chromatograms 
and assemble consensus sequences before aligning sequences 
in Mesquite v 3.81 (Maddison and Maddison 2018) using 
MAFFT v 7.299 (Katoh and Standley 2013).

To assess genetic differentiation between the two nominal 
species, we generated TCS haplotype networks in PopART 
v1.9 (Leigh and Bryant 2015) using a concatenated align-
ment of COX1 and ND1 and a separate alignment for ITS1. 
With the DNA sequences, we first assessed species boundaries 
based on initial field-based identification. Next, we evaluated 
relationships among haplotypes based on drainage of capture 
to investigate the geographic distribution of genetic variation. 
We also calculated uncorrected pairwise genetic distances be-
tween populations using MEGA 11 (Tamura et al. 2021).

Genotype-by-sequencing
Sequencing for SNP genotyping was performed using DArTseq 
(DArT Pty Ltd.), which represents a combination of DArT 
complexity reduction methods and next generation sequencing 
platforms (Sansaloni et al. 2011; Kilian et al. 2012; Courtois 
et al. 2013; Cruz et al. 2013; Raman et al. 2014). After testing 
several restriction enzyme combinations for complexity reduc-
tion, the PstI–SphI combination was selected for the P. rubrum 
and P. sintoxia species complex. DNA samples were processed 
in digestion/ligation reactions following Kilian et al. (2012) 
but replacing a single PstI-compatible adaptor with two dif-
ferent adaptors corresponding to the PstI–SphI RE overhangs. 
The adapters were designed to include an Illumina flowcell at-
tachment sequence, sequencing primer sequence, and barcode 
region (see Elshire et al. 2011).

Only PstI–SphI fragments were effectively amplified in 30 
rounds of PCR using the following thermocycling conditions: 
94 °C for 1 min followed by 30 cycles of 94 °C for 20 s, 58 °C  
for 30 s, and 72 °C for 45 s, with a final extension of 72 °C 
for 7 min. Equimolar amounts of amplification products from 
each sample of the 96-well microtiter plate were bulked and 
applied to c-Bot (Illumina) bridge PCR followed by sequencing 
on Illumina Hiseq 2500. The single read sequencing was 
run for 77 cycles. Sequences generated from each lane were 
processed using proprietary DArT analytical pipelines. In the 
primary pipeline the fastq files were first processed to filter 
out poor-quality sequences, applying more stringent selection 
criteria to the barcode region compared to the rest of the se-
quence. Filtering was performed on the raw sequences using 
the following parameters: Barcode region—minimum Phred 
pass score 30, minimum pass percentage 75; Whole read—
minimum Phred pass score 10, minimum pass percentage 50.

Approximately 2,500,000 sequences per barcoded sample 
were identified and used in marker calling. Identical sequences 
were collapsed into “fastqcoll files.” The fastqcoll files were 
“groomed” using DArT PL’s proprietary algorithm which 
corrects low quality bases from singleton tags into correct 
bases using collapsed tags with multiple members as a tem-
plate. The “groomed” fastqcoll files were used in the secondary 

pipeline for DArT PL’s proprietary calling algorithms to iden-
tify SNPs and SilicoDArTs (presence/absence of restriction 
fragments in representation) calling algorithms (DArTsoft14). 
For SNP calling, all tags from all libraries included in the 
DArTsoft14 analysis are clustered using DArT PL’s C++ al-
gorithm at the threshold distance of 3, followed by parsing 
of the clusters into separate SNP loci using a range of tech-
nical parameters, including the balance of read counts for 
the allelic pairs. Additional selection criteria were added 
to the algorithm based on analysis of approximately 1,000 
controlled cross populations. Testing for Mendelian distri-
bution of alleles in these populations facilitated selection of 
technical parameters that effectively discriminated true allelic 
variants from paralogous sequences. Additionally, multiple 
samples were processed from DNA to allelic calls as technical 
replicates, and scoring consistency was used as the main se-
lection criteria for high quality/low error rate markers. The 
quality of allelic calls was assured by high average read depth 
per locus (average across all markers was over 30 reads/locus).

Using the R package dartR v 2.7.2 (Mijangos et al. 2022), 
we performed additional filtering steps following similar 
methodologies as outlined in previous publications (Georges 
et al. 2018; Smith et al. 2021b). Loci with less than 100% 
reproducibility (see Wenzl et al. 2004) or greater than 10% 
missing data were removed. We then filtered individuals with 
greater than 10% missing data and alleles with frequencies 
less than 0.05 and retained the SNP with the highest degree of 
polymorphism at each locus to address linkage.

Genetic diversity and population structure
For all downstream GBS analyses, individuals were binned 
based on either nominal species or drainage of capture. We 
visualized the spatial distribution of genetic diversity using a 
principal coordinate analysis (PCoA) in dartR. To determine 
areas where deviations from IBD occur (e.g. Wang et al. 2010), 
we performed a Procrustes analysis in the R package vegan 
2.5-7 (Oksanen et al. 2022). The Procrustes analysis used the 
first two PCs generated by PCoA, which were rotated and scaled 
based on sampling coordinates. We used the function “protest” 
to test for a significant correlation between molecular and ge-
ographical distances using 10,000 permutations and a critical 
value of 0.05. We further investigated the relationship between 
genetic and geographic distances using a Mantel test. For the 
Mantel test, genetic distances were averaged across all SNPs 
and geographic distances were calculated using a stream dis-
tance approach to better represent geographic distance among 
localities. Stream distances were calculated as the shortest path 
between sampling locations along U.S. National Hydrography 
flowlines (NHDPlus version 2) with reference to the Albers 
Equal Area North American Datum 1983 using the packages 
sf and stplanr (Lovelace and Ellison 2018; Pebesma 2018; R 
Core Team 2022). Mantel tests used 10,000 permutations and 
a critical value of 0.05.

We used four approaches to assess population structure in 
our dataset: 1) pairwise FST, 2) a discriminant analysis of prin-
cipal components (DAPC), 3) the Bayesian clustering algorithm 
fastSTRUCTURE (Raj et al. 2014), and 4) the non-negative 
matrix factorization algorithm TESS3 (Caye et al. 2016). 
Pairwise FST was calculated between sampled populations 
in dartR using 1,000 bootstrap replicates. We performed 
DAPC in adegenet v 2.1.5 (Jombart 2008; Jombart and 
Ahmed 2011) on the first eight PCs and two DA eigenvalues, 
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which were selected based on when contributions reached a 
plateau. The best-fit number of clusters (K) was determined 
using k-means. We modeled K = 1–10 in fastSTRUCTURE, 
and the chooseK.py script was used to select the best K value 
to explain genetic structure and maximize likelihood. TESS3 
incorporates geographic information into ancestry estima-
tion, and we modeled K = 1–10 with both genotypic data and 
collection coordinates. Cross-validation criterion was used to 
select the most likely K.

Demographic history scenarios and inferences
After evaluation of genetic variation with respect to geog-
raphy, we noticed the pattern of genetic variation within 
samples from the Eastern Highlands (i.e. Cumberland, Green, 
Ohio, and Tennessee River drainages) did not follow expec-
tations of IBD. To further examine this geographic area, we 
modeled demographic scenarios in DIYABC-RF v 1.1.27 
(Collin et al. 2021) to infer the effect of past geologic events 
on observed genetic variation. First, we created a population-
level phylogenetic reconstruction based on GBS data using 
the coalescent-based approach SVDquartets (Chifman and 
Kubatko 2014) in PAUP* v 4.0a (Swofford 2002) with 100 
bootstrap replicates for nodal support. We then created seven 
scenarios (Supplementary Fig. S1) based on our phylogenetic 
reconstruction and the literature (e.g. Johnson 1980; Mayden 
1988; Berendzen et al. 2003, 2008; Haag 2010; Galloway et 
al. 2011) to infer the demographic history of P. rubrum and P. 
sintoxia populations.

Scenario 1 represents the resolved phylogenetic recon-
struction generated by SVDquartets; Scenario 2 models 
the Teays River hypothesis (historical admixture be-
tween the Cumberland + Green + Tennessee and Ohio); 
Scenario 3 represents the last glacial maximum (LGM) hy-
pothesis (historical admixture between the Green + Ohio 
and Cumberland + Tennessee); Scenario 4 models the 
Lake Green hypothesis (historical admixture between 
Cumberland + Ohio + Tennessee and Green); Scenario 5 
models the Teays River hypothesis and secondary contact 
between Interior and Eastern highlands (historical admix-
ture between Cumberland + Green + Tennessee + Ohio, 
Red + Mississippi + White, and Yazoo + Ouachita); Scenario 
6 models the LGM hypothesis and secondary contact be-
tween Interior and Eastern highlands; and Scenario 7 models 
the Lake Green hypothesis and secondary contact between 
Interior and Eastern highlands (Fig. 2). Visualizations of all 
models used in DIYABC-RF simulations are presented in 
Supplementary Fig. S1.

For DIYABC-RF simulations, we removed 12 loci that only 
had missing data for the Red and Mississippi populations 
and used more than 10,000 simulated data sets per scenario 
(75,000 total) to produce posterior distributions with each 
scenario having equal prior probability. A principal compo-
nent analysis (PCA) was performed on the summary statistics 
to evaluate how well simulated data fit observed data from 
the seven scenarios. We used all simulated data, five noise 
variables, and 1,000 Random Forest trees to determine the 
most likely scenario.

Fig. 2. Graphical representation of the best supported scenario from the DIYABC analysis. All seven scenarios are illustrated in Supplementary Fig. S1.
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Tests for hybridization
We tested for evidence of hybridization among individuals 
from the Eastern Highlands (i.e. Cumberland, Green, Ohio, 
and Tennessee River drainages) using NewHybrids v 1.1 
(Anderson and Thompson 2002). The 200 SNPs with the 
highest degree of polymorphism for individuals from the 
Eastern Highlands were used for the analysis. The analysis 
was conducted for 500,000 sweeps after a 50,000-sweep 
burn-in. Parent populations were not designated a priori 
given the observed pattern of genetic variation with re-
spect to geography. Resulting posterior probabilities were 
used to assess support of individuals being either pure bred 
(assuming the presence of two parent populations), an F1 
hybrid, an F2 hybrid, or a backcross with either parent 
population.

Results
Molecular data generation
We acquired tissues from 324 specimens originally identified 
as either P. rubrum (n = 99) or P. sintoxia (n = 225) to as-
sess genetic differentiation between the two nominal spe-
cies. From these samples, we successfully generated mtDNA 
(COX1 and ND1) and nDNA sequences (ITS1) for 200 
and 106 individuals, respectively. No gaps or stop codons 
were observed in any of the mtDNA sequences. Each taxon 
was represented by COX1 (avg. 657 nucleotides [nt]), 
ND1 (avg. 887 nt), and ITS1 (552 nt). We concatenated 
sequences from both mtDNA genes (avg. 1,544 nt) for sub-
sequent analyses.

A total of 81,356 polymorphic loci were generated using 
GBS for 184 individuals. After filtering steps, we retained 
176 individuals and 5,366 polymorphic loci. General loca-
tion, population, and sample sizes for each molecular dataset 
are presented in Table 1. All DNA data are available from 
the National Center for Biotechnology Information (COX1: 
OR633009--OR633208; ND1: OR635239-OR635438; 
ITS1: OR646411-OR64516; and GBS reads: BioProject 
IDPRJNA1026624). All metadata associated with specimens 
and tissues utilized in the study, along with DNA alignments 
(COX1, ND1, and ITS1) and SNPs are available from 
Johnson and Smith (2023) on ScienceBase (https://doi.
org/10.5066/P9RLSX0Y). Additional details on each spec-
imen used in this study, including museum catalog numbers, 
collection details, original identifications, and GenBank 
accession numbers, are available from Johnson and Smith 
(2023).

Molecular analyses
We were unable to differentiate P. rubrum and P. sintoxia 
using nDNA sequences (Fig. 3a), mtDNA sequences  
(Fig. 3b), or GBS data (Fig. 4a and b), which supports rec-
ognition of the nominal taxa as conspecific, or belonging 
to the same species. Both ITS1 and mtDNA haplotype 
networks failed to separate the nominal species and lacked 
resolution for geographic segregation of individuals based 
on drainage of capture (Fig. 3a and b). Pairwise genetic dis-
tance values are reported in Supplementary Table S1 and 
ranged from 0.003 to 0.013. Our GBS data generally align 
with sampling locality according to our PCoA (Fig. 4a), 
however, we observed patterns of genetic variation within 
the Eastern Highlands (i.e. Cumberland, Green, Ohio, and 

Tennessee River basins) that deviated from the IBD model. 
We did find a significant correlation between genetic and 
geographic distances (P < 0.0001), but the Procrustes anal-
ysis showed that samples from the Eastern Highlands, 
most notably the Green River, deviated from IBD expecta-
tions (Supplementary Fig. S2). Our Mantel test supported 
a significant association (P < 0.0001) between all sampled 
populations and stream distance among sampling localities 
despite high genetic differentiation at low stream distances 
(Supplementary Fig. S3), which is driven by comparisons of 
samples from the Eastern Highlands and congruent with our 
Procrustes analysis.

Assessments of population structure supported variable 
numbers of genetic clusters, ranging from K values of 2–9. 
Pairwise FST values are reported in Supplementary Table S2 
and ranged from 0.03 to 0.4. Using the first eight PCs, DAPC 
supported K = 9 as the best value (Supplementary Fig. S4) and 
had an overall assignment score of 91.5%. FastSTRUCTURE 
indicated K = 6 as the best likelihood and K = 7 as the best K 
to explain structure in the dataset (Fig. 5). The only difference 
was the Tennessee basin was a single cluster for K = 6 and 
split into two distinct clusters for K = 7. Cross-entropy plots 
from TESS3 supported K = 2 as the best K value but could not 
differentiate K values of 3–10, likely due to the lack of con-
cordance between observed genetic clustering and geography 
in the Eastern Highlands (Supplementary Fig. S5). The White 
River, which represents the Ozark Highlands, and one sample 
from the Upper Mississippi were distinct from the remainder 
of the samples for K = 2.

Table 1. Population designations, waterbody of collection, and samples 
sizes for mitochondrial genes (COXI and ND1), nuclear DNA sequences 
(ITS1), and genotype-by-sequencing (GBS) datasets.

Pop designations Waterbody COXI ND1 ITS1 GBS

Arkansas Illinois River 2 2 0 2

Cumberland Big South Fork 5 5 5 5

Cumberland River 1 1 1 1

Green Green River 43 43 29 41

Ohio Allegheny River 5 5 5 5

Ohio River 2 2 2 2

Shenango River 9 9 8 8

Ouachita Bayou Bartholomew 4 4 0 2

Ouachita River 5 5 0 0

Saline River 21 21 6 21

Red Little River 7 7 5 7

St. Francis St. Francis River 14 14 6 0

Tennessee Clinch River 9 9 7 10

Duck River 6 6 8 6

Holston River 1 1 0 0

Tennessee River 7 7 7 7

Upper Mississippi Chippewa River 6 6 5 6

Mississippi River 1 1 0 3

White Black River 12 12 0 12

Spring River 28 28 2 26

Strawberry River 4 4 3 3

Yazoo Big Sunflower River 8 8 7 9

Total 200 200 106 176
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Demographic history inferences
The 1,000 Random Forest trees from DIYABC-RF provided 
the following support values for demographic scenarios 
(larger values indicate higher support): Scenario 1–80; 
Scenario 2–106; Scenario 3–91; Scenario 4–140; Scenario 
5–182; Scenario 6–201; and Scenario 7–200. DIYABC-RF 
marginally supported Scenario 6 (posterior proba-
bility = 0.493) but had difficulties distinguishing among 
Scenarios 5–7. Split support among these scenarios was likely 
driven by the shared support for some level of secondary 
contact between the Interior and Eastern highlands, but the 
model could not differentiate scenarios within the Eastern 
Highlands. The DIYABC-RF supported the LGM and Lake 
Green hypotheses for the Eastern Highlands (Fig. 2) over the 
Teays River hypothesis, likely driven by evidence of multiple 
admixture events in the genetic clusters from the Green River 
population with other populations in the Eastern Highlands 
(Fig. 4a and b).

Tests for hybridization
Results from our analyses using NewHybrids strongly 
supported (all individuals with PP > 0.96) the presence of 
two parent populations: 1) a portion of individuals from the 
Cumberland, Green, and Tennessee drainages; and 2) a por-
tion of individuals from the Green and Tennessee drainages. 
All other individuals were supported as F2 hybrids of the 
two estimated parent populations (all but one individual 
PP > 0.97), which included a portion of individuals from 
the Cumberland, Green, and Tennessee drainages and all 
the individuals from the Ohio drainage. These findings align 
with results from our other analyses based on GBS data and 
support the hypothesis that populations are interbreeding, 
but remnant ancestral genotypes from historical vicariance 
have yet to be purged from multiple localities in the Eastern 
Highlands. The two parent populations were not correlated 
with initial field-based identifications representing the nom-
inal forms P. rubrum and P. sintoxia.

Fig. 3. Haplotype networks used to assess genetic relationships by nominal species (left) and drainage of capture (right) based on a) ITS1 and b) mtDNA 
(COX1 + ND1) sequences for P. rubrum and P. sintoxia. Colors within pie diagrams indicate drainage of capture and size of each circle is proportional to 
the number of individuals with each haplotype.
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Discussion
Our investigation provides the first comprehensive as-
sessment of species boundaries and phylogeography for  
P. rubrum and P. sintoxia. The two taxa were not diagnosable 
using mtDNA sequence, nDNA sequence, or GBS data, and 
we formally recognize P. rubrum as a synonym of P. sintoxia. 
Using the GBS data we collected on both formerly recognized 
species, we observed patterns of genetic variation that do 
not follow expectations of IBD, including the retention of 
three genetic clusters at the same site in the Green River. The 
three clusters were not unique to the Green River popula-
tion, each sharing membership with samples from either the 
Cumberland, Tennessee, or Ohio River basins. This pattern 
is possibly driven by population expansion from refugia 
during the LGM, vicariance events following modifications 
of drainages during Pleistocene glaciation, or infrequent long-
distance dispersal events. Our demographic analyses and tests 
for hybridization provide support for historical vicariance 
followed by secondary contact. While the timing of these 

events remains unclear, we hypothesize that genetic variation 
has been shaped by ancestral vicariance during the formation 
of Lake Green and subsequent secondary contact after the 
LGM. Below, we discuss our results in terms of their ecolog-
ical and evolutionary significance.

Species boundaries in P. sintoxia and conservation 
implications
As in previous studies (e.g. Jones et al. 2015a; Inoue et al. 2018; 
Olivera-Hyde et al. 2023), P. rubrum and P. sintoxia were 
not diagnosable using molecular characters. Our mtDNA and 
nDNA sequence data showed extensive haplotype sharing 
among individuals morphologically identified as represen-
tative of the two nominal species (Fig. 3a and b). Although 
mtDNA and nDNA sequence data have been routinely used 
to test species boundaries in North American freshwater 
mussels (Pfeiffer et al. 2016; Johnson et al. 2018; Smith et 
al. 2018, 2021a; Inoue et al. 2020), these markers often lack 
resolution and show incongruence with existing species-level 

Fig. 4. Depiction of genetic relationships between P. rubrum and P. sintoxia on our genotype-by-sequencing (GBS) dataset based on a) PCoA and b) 
unrooted phylogenetic network. Colors correspond to either original field-based identification (left) or drainage of capture (right) and an asterisk denotes 
a node with UFBS values >90.
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hypotheses in Pleurobema (Campbell et al. 2012; Inoue  
et al. 2018; Morrison et al. 2021; Olivera-Hyde et al. 2023). 
To address taxonomic uncertainty and avoid reliance on mi-
tochondrial loci, we used GBS to further investigate species 
boundaries between P. rubrum and P. sintoxia. Our GBS data 
were congruent with findings from mtDNA and nDNA se-
quence data, indicating a single species with considerable 
admixture instead of current species hypotheses that recog-
nize two distinct species (Fig. 4a and b). Both P. sintoxia and  
P. rubrum were described by Rafinesque in 1820. Following 
the principle of the first reviser (International Code of 
Zoological Nomenclature, Article 24.2), we fix the precedence 
of P. sintoxia, which classifies P. rubrum as a synonym (ICZN 
1999). We selected P. sintoxia as the valid name for this spe-
cies, despite page preference, based on frequency of usage in 
the literature and broader distribution when compared to  
P. rubrum.

Biodiversity assessments and conservation actions rely on 
data associated with species names (George and Mayden 
2005), making accurate taxonomic classification critical to 
these efforts. Our findings may help guide pending listing 
decisions and future conservation and recovery actions for 
populations formerly included as one or both nominal species. 
Our data support synonymizing P. rubrum, which has been 
proposed for listing as threatened under the U.S. Endangered 
Species Act (USFWS 2021), with P. sintoxia. The synonymy 
resolves taxonomic uncertainty and provides new context 
when assessing the geographic range of P. sintoxia. Our as-
sessment of phylogeographic structure and genetic diversity 

provides a baseline for future recovery actions (if warranted) 
while giving insights into historical processes shaping the ge-
ographic distribution of genetic variation across the Central 
Highlands region. Our findings add to the growing body of 
literature that support evaluating morphology-based taxo-
nomic hypotheses using molecular data to inform conserva-
tion planning for freshwater mussels (e.g. Pfeiffer et al. 2016; 
Johnson et al. 2018; Smith et al. 2018, 2019; Inoue et al. 
2020; Olivera-Hyde et al. 2023).

Glacial dynamics shape complex demographic 
history in P. sintoxia
Although we found a significant correlation between genetic 
and geographic distances when analyzing all populations 
(P < 0.0001), genetic variation of P. sintoxia individuals from 
the Eastern Highlands did not meet expectations of IBD 
(Supplementary Figs. S2 and S3). Therefore, it is unlikely that 
dispersal or vicariance alone can explain the observed ge-
netic variation in Eastern Highlands drainages. In freshwater 
taxa, including mussels, glacial refugia are well known to af-
fect the geographic patterns of genetic diversity. Molecular 
data have been useful in identifying glacial refugia and post-
glacial dispersal (e.g. Berendzen et al. 2003, 2008; Elderkin 
et al. 2007, 2008; Hewitt et al. 2019), and we took a sim-
ilar approach to investigate the effects of drainage evolution 
and glacial refugia on contemporary patterns of genetic di-
versity in P. sintoxia. Our results suggest that a more com-
plex demographic history, involving ancestral vicariance and 
secondary contact during post-glaciation dispersal events, 
best explains the observed genetic differentiation among P. 
sintoxia populations. Our results support that populations 
from the Interior Highlands (Ozarks and Ouachita highlands) 
were isolated from the Eastern Highlands (Cumberland, 
Green, Ohio, Tennessee River drainages), likely during glacial 
advances in the Pleistocene (Thornbury 1965; Mayden 1988), 
which aligns with observed patterns seen in other aquatic 
taxa (e.g. Berendzen et al. 2008).

Our demographic modeling supported a vicariance event 
isolating the ancestral Green River from other drainages in 
the Eastern Highlands, which provides an explanation for 
the observed patterns of contemporary genetic variation  
in the Green River. During the late Pleistocene, Green River 
headwaters were isolated by the formation of Lake Green in 
the lower reach of the Green River mainstem, which has been 
implicated as a barrier to fish passage (Strange and Burr 1997; 
Simons 2004; Ray et al. 2006) and likely influenced dispersal 
of other aquatic organisms. Although the formation of Lake 
Green provides an explanation for why our results support the 
early vicariance of the Green River, vicariance alone does not 
explain observed genetic variation given that individuals col-
lected from the same Green River site were resolved in three 
genetic clusters, each sharing membership with samples from 
either the Cumberland, Tennessee, or Ohio river basins (Fig. 4a).  
Interestingly, a similar pattern of genetic variation has been 
observed in the Streamlined Chub, Erimystax dissimilis 
(Actinopterygii: Leuciscidae), a fish confirmed to be a larval 
host for P. sintoxia (Culp et al. 2009). Erimystax dissimilis mi-
tochondrial haplotypes from the Green River drainage were 
observed in two divergent clades, one containing haplotypes 
from all Eastern Highlands drainages sampled and the other 
exclusive to the Green River (Strange and Burr 1997; Simons 
2004). The congruence in patterns of genetic variation in 

Fig. 5. Genomic cluster assignment based on maximum-likelihood 
analysis in fastSTRUCTURE at K = 6 (top) and K = 7 (bottom) based 
on our genotype-by-sequencing (GBS) dataset for individual P. sintoxia 
samples grouped by drainage of capture.
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P. sintoxia and at least one larval host fish suggests a com-
plex demographic history, likely including secondary contact 
during fish dispersal events, has shaped the genetic makeup 
of fish and mussel populations in the Green River. Our dem-
ographic modeling supported this hypothesis and suggests 
that secondary contact between the Green River and other 
drainages in the Eastern Highlands occurred during the ev-
olutionary history of P. sintoxia. We hypothesize that sec-
ondary contact occurred during contraction of ice sheets after 
the LGM, albeit we cannot reject the event occurred during 
other late Pleistocene interglacial periods. This hypothesis is 
based on the recognition of the Green River basin as an im-
portant refugium for freshwater mussels and the hypothesis 
that the local fauna repopulated the upper Ohio River and 
its tributaries after glacial events (Johnson 1980). This hy-
pothesis was further supported by our tests for hybridization 
given all individuals from the Ohio River were identified as 
putative hybrid origin between putative Green and Tennessee 
River refugia.

It remains unclear why multiple genetic clusters have been 
retained in several populations of P. sintoxia. The individuals 
sampled from the Green River were recovered in three genetic 
clusters that included both morphological forms and samples 
from other drainages and were supported to interbreed based 
on hybridization analyses. Similarly, we observed two genetic 
clusters in the Cumberland and Tennessee River drainages, 
each of which were most closely related to potential sources 
from the Green River. We hypothesize the observed patterns of 
genetic variation are the result of geologic events that created 
contact zones for different genetic sources to mix during post-
glaciation dispersal events. In the Cumberland River drainage, 
the Big South Fork of the Cumberland River enters the 
Cumberland River slightly downstream of the hypothesized 
original location of Cumberland Falls (McGrain 1966). This 
barrier appears to have allowed the aquatic faunas of the 
upper and middle Cumberland River to follow independent 
evolutionary trajectories despite their proximity. Relationships 
among our genetic samples from the Cumberland drainage 
are therefore likely explained by this vicariance, with samples 
from the Big South Fork grouping with a cluster consisting of 
samples from both the Green and Ohio rivers, while our sample 
from the lower Cumberland groups most closely with a cluster 
endemic to the Green River. Our samples from the Tennessee 
River basin form two distinct clusters, one with samples from 
the Clinch, Duck, and Green Rivers, and another with only the 
Clinch and Tennessee rivers. The Clinch and Duck rivers are 
well known to have complex physiographic histories involving 
a separation from the Tennessee River and connections to pre-
historic drainages in the Eastern Highlands (Mayden 1988). 
Given the complex demographic history among populations 
in the region, it is not unexpected that genotypes in both the 
Clinch and Duck form a cluster with individuals from the 
Green River drainage.

Population genetic theory (e.g. Hardy 1908) would suggest 
a single generation of genetic interchange would remove an-
cestral variation in the populations multiple genetic clusters, 
but we cannot reject that the observed genetic distinctiveness 
is functionally significant and may be artifacts of selection 
for localized conditions. However, the dataset in our study 
is inadequate to test such hypotheses given the lack of envi-
ronmental covariates with collection localities and the lack 
of genomic resources for Pleurobema or close relatives. We 

hypothesize that the variation is selectively neutral, with re-
cent, repeated secondary contact leading to the retention of 
putative ancestral variation, particularly within populations 
sampled from the Green River. Further studies using more ro-
bust methodologies, such as genome-wide association studies 
(see Funk et al. 2019), may facilitate our understanding of 
the functional significance of observed genetic variation in  
P. sintoxia in the Eastern Highlands.

Conclusion
Our findings resolve the longstanding taxonomic uncertainty 
regarding the conspecific status of P. rubrum and P. sintoxia, 
which may have significant conservation implications for 
North American freshwater mussels. Pleurobema rubrum is 
proposed threatened under the U.S. Endangered Species Act. 
Our results support the species as a synonym of P. sintoxia, 
which may prompt natural resource managers to reconsider 
conservation actions for P. rubrum and P. sintoxia. Our findings 
also provide another empirical example of how the dynamic 
geological history of the Eastern Highlands has shaped the 
demographic history of aquatic species. Future studies using 
more robust ecological and molecular methodologies may be 
necessary to better understand the presence of ancestral var-
iation in multiple populations of P. sintoxia and its potential 
adaptive significance.

Supplementary material
Supplementary material is available at Journal of Heredity 
Journal online.
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